更多>>精华博文推荐
更多>>人气最旺专家

张表臣

领域:中国网

介绍:跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不...

李涌恩

领域:中国质量新闻网

介绍:命题角度2 求概率分布例4 一袋中装有5个球,编号分别为1,2,3,4,5.在袋中同时取3个球,以X表示取出的3个球中的最小号码,写出随机变量X的概率分布.解答解 随机变量X的可能取值为1,2,3.因此,X的概率分布如下表:引申探究若将本例条件中5个球改为6个球,最小号码改为最大号码,其他条件不变,试写出随机变量X的概率分布.解答所以随机变量X的概率分布如下表: 随机变量及其概率分布第2章 概率学习目标1.理解随机变量的含义,了解随机变量与函数的区别与联系.2.理解随机变量x的概率分布,掌ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐

亚游ag旗舰厅
本站新公告ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐
5gh | 2019-01-22 | 阅读(520) | 评论(140)
“和谐”意味着意义和声音之间、视觉和听觉之间、内质与形体之间关系的协调,这个调和的过程即是将诗融为有机整体的过程。【阅读全文】
ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐
wif | 2019-01-22 | 阅读(357) | 评论(510)
跟踪训练3 甲、乙两人进行围棋比赛,每局比赛甲胜的概率为乙胜的概率为没有和棋,采用五局三胜制,规定某人先胜三局则比赛结束,求比赛局数X的均值.解答解 由题意,X的所有可能值是3,4,5.所以X的概率分布如下表:例4 受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关.某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中各随机抽取50辆,统计数据如下:类型四 均值的实际应用品牌甲乙首次出现故障时间x/年0x≤11x≤2x20x≤2x2轿车数量/辆2345545每辆利润/万元将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;解答(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的概率分布;解答解 依题意得X1的概率分布如下表:X2的概率分布如下表:(3)该厂预计今后这两种品牌轿车的销量相当,由于资金限制,因此只能生产其中一种品牌的轿车.若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?请说明理由.解答因为E(X1)E(X2),所以应生产甲品牌轿车.解答概率模型的三个步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的概率分布,计算随机变量的均值.(3)对照实际意义,回答概率、均值等所表示的结论.反思与感悟跟踪训练4 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;解答习题课离散型随机变量的均值第2章 概率学习目标1.进一步熟练掌握均值公式及性质.2.能利用随机变量的均值解决实际生活中的有关问题.题型探究知识梳理内容索引当堂训练知识梳理1.对均值的再认识(1)含义:均值是离散型随机变量的一个重要特征数,反映或刻画的是随机变量取值的平均水平.(2)来源:均值不是通过一次或多次试验就可以得到的,而是在大量的重复试验中表现出来的相对稳定的值.(3)单位:随机变量的均值与随机变量本身具有相同的单位.(4)与平均数的区别:均值是概率意义下的平均值,不同于相应数值的平均数.2.均值的性质X是随机变量,若随机变量η=aX+b(a,b∈R),则E(η)=E(aX+b)=aE(X)+b.题型探究例1 在10件产品中有2件次品,连续抽3次,每次抽1件,求:(1)不放回抽样时,抽取次品数ξ的均值;解答类型一 放回与不放回问题的均值∴随机变量ξ的概率分布如下表:∴随机变量ξ服从超几何分布,n=3,M=2,N=10,(2)放回抽样时,抽取次品数η的均值.解答不放回抽样服从超几何分布,放回抽样服从二项分布,求均值可利用公式代入计算.反思与感悟跟踪训练1 甲袋和乙袋中都装有大小相同的红球和白球,已知甲袋中共有m个球,乙袋中共有2m个球,从甲袋中摸出1个球为红球的概率为从乙袋中摸出1个球为红球的概率为P2.(1)若m=10,求甲袋中红球的个数;解 设甲袋中红球的个数为x,解答(2)若将甲、乙两袋中的球装在一起后,从中摸出1个红球的概率是求P2的值;解答(3)设P2=若从甲、乙两袋中各自有放回地摸球,每次摸出1个球,并且从甲袋中摸1次,从乙袋中摸2次.设ξ表示摸出红球的总次数,求ξ的概率分布和均值.解答解 ξ的所有可能值为0,1,2,3.所以ξ的概率分布为例2 如图所示,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).(1)求V=0的概率;类型二 与排列、组合有关的分布列的均值解答(2)求均值E(V).解答因此V的概率分布如下表:解此类题的关键是搞清离散型随机变量X取每个值时所对应的随机事件,然后利用排列、组合知识求出X取每个值时的概率,利用均值的公式便可得到.反思与感悟跟踪训练2 某地举办知识竞赛,组委会为每位选手都备有10道不同的题目,其中有6道艺术类题目,2道文学类题目【阅读全文】
4kg | 2019-01-22 | 阅读(356) | 评论(43)
规避策略:解决有余数的除法的实际问题时,余数的单位名称要与被除数的单位名称相同。【阅读全文】
g4w | 2019-01-22 | 阅读(793) | 评论(64)
各国医生年收入与周工作时间各国医务人员薪酬占医院成本比例*年收入(万美元)周工作时间(小时)医改的必要性医务人员薪酬制度不科学、激励机制不合理,收入与付出不对等床位数13201200年急诊人次220,00079,542医师、研究人员80019692,761,10062,400年住院手术量40,00029,833北京某三甲医院美国梅奥医院案例:中美医院取样对比*年就诊人次2761,100*医改方向围绕医疗的公益性质,健全覆盖城乡居民的基本医疗卫生制度。【阅读全文】
se3 | 2019-01-22 | 阅读(178) | 评论(820)
A、接受聘请担任评标委员会成员B、依法对投标文件进行独立评审,提出公正评审意见,不受任何单位或者个人的干预C、接受参加评标活动的劳务报酬D、对本人违规行为的处理有权提出异议3、根据国铁工程监〔2017〕27号《铁路建设工程评标专家库及评标专家管理办法》,关于专家权利和义务的规定,下列哪些属于评标专家负有的义务(ABCD)。【阅读全文】
i3t | 2019-01-21 | 阅读(973) | 评论(519)
红豆国际美洲一部涤纶长丝、复丝长丝以英文字母“D”表示,粗细用“旦尼尔”表示,也称旦数或D数。【阅读全文】
nu3 | 2019-01-21 | 阅读(998) | 评论(703)
PAGEPAGE1单元质量检测二异域人生(考试时间:150分钟 分值:150分)一、现代文阅读(35分)(一)论述类文本阅读(9分,每小题3分)阅读下面的文字,完成1~3题。【阅读全文】
wnj | 2019-01-21 | 阅读(257) | 评论(936)
滑雪旅游度假区最早发端于瑞士、奥地利、法国、德国以及意大利所在的阿尔卑斯山的滑雪中心,属于冬季型旅游度假区。【阅读全文】
ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐,ag8829环亚娱乐
2zr | 2019-01-21 | 阅读(263) | 评论(563)
跟踪训练4 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;解答解 记事件A1={从甲箱中摸出的1个球是红球},A2={从乙箱中摸出的1个球是红球},B1={顾客抽奖1次获一等奖},B2={顾客抽奖1次获二等奖},C={顾客抽奖1次能获奖}.故所求概率为 离散型随机变量的均值第2章 随机变量的均值和方差学习目标1.通过实例理解离散型随机变量均值的概念,能计算简单离散型随机变量的均值.2.理解离散型随机变量的均值的性质.3.掌握两点分布、二项分布的均值.4.会利用离散型随机变量的均值,反映离散型随机变量的取值水平,解决一些相关的实际问题.题型探究问题导学内容索引当堂训练问题导学知识点一 离散型随机变量的均值或数学期望设有12个西瓜,其中4个重5kg,3个重6kg,5个重7kg.思考1 任取1个西瓜,用X表示这个西瓜的重量,试问X可以取哪些值?答案答案 X=5,6,7.思考2 当X取上述值时,对应的概率分别是多少?答案思考3 如何求每个西瓜的平均重量?答案(1)数学期望:E(X)=μ=.(2)性质①pi≥0,i=1,2,…,n;②p1+p2+…+pn=1.(3)数学期望的含义:它反映了离散型随机变量取值的.Xx1x2…xnPp1p2…pn离散型随机变量的均值或数学期望一般地,若离散型随机变量X的概率分布如下表:梳理x1p1+x2p2+…+xnpn平均水平知识点二 两点分布、超几何分布、二项分布的均值1.两点分布:若X~0-1分布,则E(X)=.2.超几何分布:若X~H(n,M,N),则E(X)=.3.二项分布:若X~B(n,p),则E(X)=.pnp题型探究命题角度1 一般离散型随机变量的均值例1 某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得-100分,假设这名同学回答正确的概率均为,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分X的概率分布和均值;解答类型一 离散型随机变量的均值解 X的可能取值为-300,-100,100,(X=-300)==,P(X=300)==,所以X的概率分布如下表:X-300-所以E(X)=(-300)×+(-100)×+100×+300×=180(分).(2)求这名同学总得分不为负分(即X≥0)的概率.解 这名同学总得分不为负分的概率为P(X≥0)=P(X=100)+P(X=300)=+=解答求随机变量X的均值的方法和步骤(1)理解随机变量X的意义,写出X所有可能的取值.(2)求出X取每个值的概率P(X=k).(3)写出X的分布列.(4)利用均值的定义求E(X).反思与感悟跟踪训练1 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元,20个奖品是25元,5个奖品是100元.在不考虑获利的前提下,一张彩票的合理价格是多少元?解答解 设一张彩票的中奖额为随机变量X,显然X的所有可能取值为0,5,25,100.依题意X的概率分布如下表:=,所以一张彩票的合理价格是元.命题角度2 二项分布与两点分布的均值例2 某运动员投篮命中率为p=(1)求投篮1次命中次数X的均值;解 投篮1次,命中次数X的概率分布如下表:解答则E(X)=(2)求重复5次投篮,命中次数Y的均值.解 由题意知,重复5次投篮,命中次数Y服从二项分布,即Y~B(5,),E(Y)=np=5×=3.解答引申探究在重复5次投篮时,命中次数为Y,随机变量η=5Y+2.求E(η).解 E(η)=E(5Y+2)=5E(Y)+2=5×3+2=17.解答(1)常见的两种分布的均值设p为一次试验中成功的概率,则①两点分布E(X)=p;②二项分布E(X)=np.熟练应用上述两公式可大大减少运算量,提高解题速度.(2)两点分布与二项分布辨析①相同点:一次试验中要么发生要么不发生.②不【阅读全文】
yer | 2019-01-20 | 阅读(462) | 评论(146)
(一)激动药(agonist)(二)拮抗药(antagonist)拮抗剂为有较强亲和力,而无内在活性的药物,与受体结合但不产生激动活性。【阅读全文】
3tk | 2019-01-20 | 阅读(169) | 评论(147)
A、具有法定回避情形的,应主动提出回避B、遵守有关法律、法规和规章规定,遵守评标工作纪律,客观公正进行评审C、及时更新个人信息、参加业务培训,接受评价和考核D、协助、配合有关行政监督部门的监督、检查及投诉调查4、根据国铁工程监〔2017〕27号《铁路建设工程评标专家库及评标专家管理办法》,下列属于不得担任招标项目评标专家的情形的有(ABCD)。【阅读全文】
v3q | 2019-01-20 | 阅读(522) | 评论(637)
椎间盘微创手术系统——椎间孔镜什么是椎间盘突出症?椎间盘突出症:是临床上较为常见的脊柱疾病之一。【阅读全文】
ws1 | 2019-01-20 | 阅读(807) | 评论(814)
5.消化系统疾病治疗药:5%~6%。【阅读全文】
x2n | 2019-01-19 | 阅读(951) | 评论(959)
主要表现为满月脸、多血质外貌、向心性肥胖、痤疮、紫纹、高血压、继发性糖尿病和骨质疏松等治疗手术切除增生的脂肪组织脂肪抽吸术戒酒全面检查,对症支持容易复发女,78岁,一月前无明显诱因发现肉眼血尿,为全程性,无血块,自述伴小腹“热”感病例3CT疑难病例讨论男,44岁,无明显诱因发现颈部逐渐增粗三年,无疼痛,无呼吸困难,未触及肿块病例2如何描述?应重点观察哪些结构?如何诊断?脂肪瘤?Madelung综合征Madelung综合征,也称为良性对称性脂肪过多症,多发性对称性脂肪过多症,或Launois-Bensaude综合征特点:大量无包膜脂肪团呈对称性聚集在颈项部、上肢或躯干上部;进行性增大,质软,无压痛,表面皮肤色泽正常,部分患者颈部皮肤色素增多,变红,颈部皮肤粗糙病理:无包膜的脂肪组织流行病学特点1846年Brodie首次报道了一例颈项部大量脂肪聚集皮下的病例1888年Madelung首次对文献报道的33例病例做了总结和探讨常见于30-60岁的中年男性,男女比例3:1~5:1,文献报道最小的患者仅有九岁多有长期饮酒史或慢性酒精中毒史常合并诸多内科疾病,包括外周脱髓鞘病变,肝病,糖耐量下降,糖尿病,高尿酸血症,甲减,内分泌肿瘤等病因不明目前一般认为与长期慢性酒精中毒有关,脂肪异常堆积是由于儿茶酚胺作用下脂肪分解代谢存在缺陷所致;发病部位正好是棕色脂肪的主要分布区,所以认为此病是一种起源于棕色脂肪的类肿瘤样病变;棕色脂肪含有丰富的线粒体,长期滥用酒精灯可以使某些脂肪分解代谢有关的大分子基因发生突变,造成脂肪细胞分解代谢障碍,脂肪细胞瘤样增生病因患者照片皮下组织内见弥漫性、对称性明显增厚的脂肪组织脂肪组织无明显包膜,无边界,探头加压能变形脂肪组织以皮下为主,可以深入深筋膜,甚至深入颈动脉鞘内术前影像学检查以明确脂肪包块的分布,大血管的走形,气管受压的程度,上纵隔是否受累超声表现【阅读全文】
pb2 | 2019-01-19 | 阅读(775) | 评论(300)
A.“信用交通”网站B.“信用中国”网站C.政府微信公众号D.国家企业信用信息公示系统10.根据《“互联网+”招标采购行动方案(2017-2019年)》的规定,要按照统一标准、互利互惠的要求,依托电子招标投标公共服务平台,加快各类ABC协同运行、互联互通、信息共享,实现招标采购全流程透明高效运行。【阅读全文】
共5页

友情链接,当前时间:2019-01-22

利来国际最老牌 利来国际旗舰厅怎么 利来国际最老牌 利来,利来娱乐 www.w66.com
利来娱乐帐户 www.w66.com 利来 利来国际最老牌手机板 利来官方网站w66利来
利来国际w66.com www.w66利来国际 利来国际真人娱乐 利来国际w66利来国际w66 利来电游
w66.com利来国际 利来电游 利来娱乐备用 利来国际老牌软件 利来国际老牌
宁城县| 营口市| 海盐县| 芦山县| 深泽县| 得荣县| 新昌县| 准格尔旗| 商南县| 平邑县| 鄂托克前旗| 古田县| 广南县| 双柏县| 玛多县| 仁布县| 浏阳市| 哈巴河县| 松溪县| 松溪县| 大同市| 北京市| 平顶山市| 弥渡县| 青田县| 铜梁县| 舞阳县| 准格尔旗| 泰和县| 从化市| 张家口市| 夏邑县| 龙胜| 平利县| 巴里| 府谷县| 丹东市| 松滋市| 正镶白旗| 栾城县| 两当县| http://m.26190720.cn http://m.72313747.cn http://m.41673782.cn http://m.37734300.cn http://m.39195031.cn http://m.50471878.cn